On Totally Real Hilbert - Speiser Fields of Type

نویسنده

  • HENRI JOHNSTON
چکیده

Let G be a finite abelian group. A number field K is called a Hilbert-Speiser field of type G if for every tame G-Galois extension L/K has a normal integral basis, i.e., the ring of integers OL is free as an OKG-module. Let Cp denote the cyclic group of prime order p. We show that if p ≥ 7 (or p = 5 and extra conditions are met) and K is totally real with K/Q ramified at p, then K is not Hilbert-Speiser of type Cp.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fe b 20 09 ON TOTALLY REAL HILBERT - SPEISER FIELDS OF TYPE C

Let G be a finite abelian group. A number field K is called a Hilbert-Speiser field of type G if every tame G-Galois extension L/K has a normal integral basis, i.e., the ring of integers OL is free as an OKG-module. Let Cp denote the cyclic group of prime order p. We show that if p ≥ 7 (or p = 5 and extra conditions are met) and K is totally real with K/Q ramified at p, then K is not Hilbert-Sp...

متن کامل

On the Equivalence of the Restricted Hilbert-speiser and Leopoldt Properties

Let G be a finite abelian group. A number field K is called a Hilbert-Speiser field of type G if for every tame G-Galois extension L/K, the ring of integers OL is free as an OKG-module. If OL is free over the associated order AL/K for every G-Galois extension L/K, then K is called a Leopoldt field of type G. It is well-known (and easy to see) that if K is Leopoldt of type G, then K is Hilbert-S...

متن کامل

Mordell-Weil growth for GL2-type abelian varieties over Hilbert class fields of CM fields

Let A be a modular abelian variety of GL2-type over a totally real field F of class number one. Under some mild assumptions, we show that the Mordell-Weil rank of A grows polynomially over Hilbert class fields of CM extensions of F .

متن کامل

Hilbert modular forms and the Gross-Stark conjecture

Let F be a totally real field and χ an abelian totally odd character of F . In 1988, Gross stated a p-adic analogue of Stark’s conjecture that relates the value of the derivative of the p-adic L-function associated to χ and the p-adic logarithm of a p-unit in the extension of F cut out by χ. In this paper we prove Gross’s conjecture when F is a real quadratic field and χ is a narrow ring class ...

متن کامل

On a more accurate multiple Hilbert-type inequality

By using Euler-Maclaurin's summation formula and the way of real analysis, a more accurate multipleHilbert-type inequality and the equivalent form are given. We also prove that the same constantfactor in the equivalent inequalities is the best possible.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009